Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms — Revisited

Andreas Maletti and Cătălin Ionuţ Tîrnăucă

Research Group on Mathematical Linguistics Rovira i Virgili University Tarragona, Spain andreas.maletti@urv.cat catalinionut.tirnauca@estudiants.urv.cat

20th of May, 2009

milloudetion

Preliminaries

- Tree Homomorphisms
- Tree Bimorphisms

3 Syntax-Directed Translation Schemata

- Tree Homomorphisms
- Tree Bimorphisms

- Syntax-based machine translation was established by the demanding need of systems used in practical translations between natural languages [Knight 2007]
- An ideal such system should [Knight 2007]
 - perform difficult rotations (reorder parts of sentences)
 - model syntax-sensitive transformations (i.e., tree transformations)
 - have composability (smaller parts easier to test, train, etc.)

- Syntax-based machine translation was established by the demanding need of systems used in practical translations between natural languages [Knight 2007]
- An ideal such system should [Knight 2007]
 - perform difficult rotations (reorder parts of sentences)
 - 2 model syntax-sensitive transformations (i.e., tree transformations)
 - have composability (smaller parts easier to test, train, etc.)

- Syntax-based machine translation was established by the demanding need of systems used in practical translations between natural languages [Knight 2007]
- An ideal such system should [Knight 2007]
 - perform difficult rotations (reorder parts of sentences)
 - 2 model syntax-sensitive transformations (i.e., tree transformations)
 - have composability (smaller parts easier to test, train, etc.)

- Syntax-based machine translation was established by the demanding need of systems used in practical translations between natural languages [Knight 2007]
- An ideal such system should [Knight 2007]
 - perform difficult rotations (reorder parts of sentences)
 - 2 model syntax-sensitive transformations (i.e., tree transformations)
 - have composability (smaller parts easier to test, train, etc.)

- Syntax-based machine translation was established by the demanding need of systems used in practical translations between natural languages [Knight 2007]
- An ideal such system should [Knight 2007]
 - perform difficult rotations (reorder parts of sentences)
 - 2 model syntax-sensitive transformations (i.e., tree transformations)
 - A have composability (smaller parts easier to test, train, etc.)

4

How to Model Tree Transformations?

• Tree transducers

- easy to implement: many available tools, e.g. TIBURON/ISI
- closure under composition does not hold for the main types [Engelfriet 1975, Gécseg & Steinby 1984, Knight 2007]

Tree bimorphisms

- algebraic mechanisms, harder to implement (no available tools)
- composition easier to establish by imposing suitable restrictions on their constituents [Arnold & Dauchet 1982, Bozapalidis 1992, Steinby 1986, Takahashi 1972]

Synchronous grammars

- naturally define difficult rotations: e.g. Arabic-English
- quite easy to implement
- very few composition results are known [Shieber 2004]

How to Model Tree Transformations?

• Tree transducers

- easy to implement: many available tools, e.g. TIBURON/ISI
- closure under composition does not hold for the main types [Engelfriet 1975, Gécseg & Steinby 1984, Knight 2007]

Tree bimorphisms

- algebraic mechanisms, harder to implement (no available tools)
- composition easier to establish by imposing suitable restrictions on their constituents [Arnold & Dauchet 1982, Bozapalidis 1992, Steinby 1986, Takahashi 1972]

Synchronous grammars

- naturally define difficult rotations: e.g. Arabic-English
- quite easy to implement
- very few composition results are known [Shieber 2004]

How to Model Tree Transformations?

• Tree transducers

- easy to implement: many available tools, e.g. TIBURON/ISI
- closure under composition does not hold for the main types [Engelfriet 1975, Gécseg & Steinby 1984, Knight 2007]

• Tree bimorphisms

- algebraic mechanisms, harder to implement (no available tools)
- composition easier to establish by imposing suitable restrictions on their constituents [Arnold & Dauchet 1982, Bozapalidis 1992, Steinby 1986, Takahashi 1972]

• Synchronous grammars

- naturally define difficult rotations: e.g. Arabic-English
- quite easy to implement
- very few composition results are known [Shieber 2004]

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Uliman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves
 - recognizabilit
 - naturally describes the tree transformations defined by SDTSs
- Overall, we strengthen these results:

estentiation (1) a more general classific under composition (no restriction) (1) a more general classific under composition (no restriction) (1) a material classific under compositions doscribes (no

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - Inaturally describes the tree transformations defined by SDTSs

Overall, we strengthen these results:

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - a naturally describes the tree transformations defined by SDTSs

Overall, we strengthen these results:

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - naturally describes the tree transformations defined by SDTSs

Overall, we strengthen these results:

 a smaller class of tree bimorphisms defines the same translations as SDTSs
 a more general closure under composition (no restriction)
 the smaller class of tree bimorphisms describes tree

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - Inaturally describes the tree transformations defined by SDTSs

Overall, we strengthen these results:

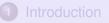
- a smaller class of tree bimorphisms defines the same translations as SDTSs
 - a more general closure under composition (no restriction)
 - the smaller class of tree bimorphisms describes tree
 - transformations defined only by SDTSs in a normal form.

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - Inaturally describes the tree transformations defined by SDTSs
- Overall, we strengthen these results:
 - a smaller class of tree bimorphisms defines the same translations as SDTSs
 - a more general closure under composition (no restriction)
 - the smaller class of tree bimorphisms describes tree transformations defined only by SDTSs in a normal form

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - Inaturally describes the tree transformations defined by SDTSs
- Overall, we strengthen these results:
 - a smaller class of tree bimorphisms defines the same translations as SDTSs
 - a more general closure under composition (no restriction)
 the smaller class of tree bimorphisms describes tree
 - transformations defined only by SDTSs in a normal form

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - Inaturally describes the tree transformations defined by SDTSs
- Overall, we strengthen these results:
 - a smaller class of tree bimorphisms defines the same translations as SDTSs
 - a more general closure under composition (no restriction)
 - the smaller class of tree bimorphisms describes tree transformations defined only by SDTSs in a normal form

- How about describing synchronous grammars with the help of tree bimorphisms? [Shieber 2004]
- [Steinby & Tîrnăucă 2007] introduced the class of quasi-alphabetic tree bimorphisms which:
 - is effectively equal to syntax-directed translation schemata of [Aho & Ullman 1972] (in terms of translations)
 - is closed under composition (restricted) and preserves recognizability
 - Inaturally describes the tree transformations defined by SDTSs
- Overall, we strengthen these results:
 - a smaller class of tree bimorphisms defines the same translations as SDTSs
 - a more general closure under composition (no restriction)
 - the smaller class of tree bimorphisms describes tree transformations defined only by SDTSs in a normal form



Preliminaries

- Tree Homomorphisms
- Tree Bimorphisms

3 Syntax-Directed Translation Schemata

4 New Connection between SDTSs and Tree Bimorphisms

5 Closure under Composition

Tree Homomorphisms - Basic Facts

Notations

Σ ranked alphabet, V leaf alphabet (variables), X formal variables

•
$$X_k = \{x_1, x_2, \ldots, x_k\}$$

•
$$\Sigma(V) = \{f(v_1,\ldots,v_k) \mid f \in \Sigma_k, v_1,\ldots,v_k \in V\}$$

- *T*_Σ(*V*) = set of all Σ-trees indexed by variables *V*
- tree languages = subsets of $T_{\Sigma}(V)$

Definition (Tree Homomorphism) [Gécseg & Steinby 1984]

A **tree homomorphism** $\varphi \colon T_{\Sigma}(V) \to T_{\Delta}(Y)$ is determined by a mapping $\varphi_V \colon V \to T_{\Delta}(Y)$ and mappings $\varphi_k \colon \Sigma_k \to T_{\Delta}(Y \cup X_k)$ for every $k \ge 0$ as follows:

1
$$v \varphi = \varphi_V(v)$$
 for every $v \in V$

2) $f(t_1, \ldots, t_k)\varphi = \varphi_k(f)(x_1 \leftarrow t_1\varphi, \ldots, x_k \leftarrow t_k\varphi)$ for every $t_1, \ldots, t_k \in T_{\Sigma}(V)$ and $f \in \Sigma_k$.

Tree Homomorphisms - Basic Facts

Notations

Σ ranked alphabet, V leaf alphabet (variables), X formal variables

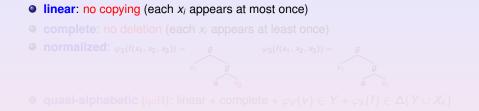
•
$$X_k = \{x_1, x_2, \ldots, x_k\}$$

•
$$\Sigma(V) = \{f(v_1,\ldots,v_k) \mid f \in \Sigma_k, v_1,\ldots,v_k \in V\}$$

- *T*_Σ(*V*) = set of all Σ-trees indexed by variables *V*
- tree languages = subsets of $T_{\Sigma}(V)$

Definition (Tree Homomorphism) [Gécseg & Steinby 1984]

A tree homomorphism $\varphi : T_{\Sigma}(V) \to T_{\Delta}(Y)$ is determined by a mapping $\varphi_{V} : V \to T_{\Delta}(Y)$ and mappings $\varphi_{k} : \Sigma_{k} \to T_{\Delta}(Y \cup X_{k})$ for every $k \ge 0$ as follows: 1 $v\varphi = \varphi_{V}(v)$ for every $v \in V$ 2 $f(t_{1}, \ldots, t_{k})\varphi = \varphi_{k}(f)(x_{1} \leftarrow t_{1}\varphi, \ldots, x_{k} \leftarrow t_{k}\varphi)$ for every $t_{1}, \ldots, t_{k} \in T_{\Sigma}(V)$ and $f \in \Sigma_{k}$.



• symbol-to-symbol (ssH): quasi-alphabetic + $\varphi_k(f) \in \Delta(X_k)$

• alphabetic (aH): symbol-to-symbol + normalized (relabelings)

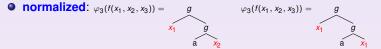
- Inear: no copying (each x_i appears at most once)
- **complete**: no deletion (each *x_i* appears at least once)
- normalized. $\varphi_3(t(x_1, x_2, x_3)) = g \qquad \varphi_3(t(x_1, x_2, x_3)) = g \qquad x_1 \qquad g \qquad x_1 \qquad g$

• quasi-alphabetic (qaH): linear + complete + $\varphi_V(v) \in Y + \varphi_k(f) \in \Delta(Y \cup X_k)$

• symbol-to-symbol (ssH): quasi-alphabetic + $\varphi_k(f) \in \Delta(X_k)$

• alphabetic (aH): symbol-to-symbol + normalized (relabelings)

- Inear: no copying (each x_i appears at most once)
- **complete**: no deletion (each *x_i* appears at least once)



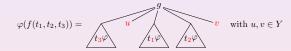
• quasi-alphabetic (qaH): linear + complete + $\varphi_V(v) \in Y + \varphi_k(f) \in \Delta(Y \cup X_k)$

• symbol-to-symbol (ssH): quasi-alphabetic + $\varphi_k(f) \in \Delta(X_k)$

alphabetic (aH): symbol-to-symbol + normalized (relabelings)

- Inear: no copying (each x_i appears at most once)
- complete: no deletion (each x_i appears at least once)

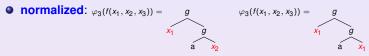
• quasi-alphabetic (qaH): linear + complete + $\varphi_V(v) \in Y + \varphi_k(f) \in \Delta(Y \cup X_k)$



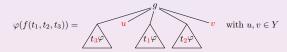
• symbol-to-symbol (ssH): quasi-alphabetic + $\varphi_k(f) \in \Delta(X_k)$

alphabetic (aH): symbol-to-symbol + normalized (relabelings)

- Inear: no copying (each x_i appears at most once)
- complete: no deletion (each x_i appears at least once)



• quasi-alphabetic (qaH): linear + complete + $\varphi_V(v) \in Y + \varphi_k(f) \in \Delta(Y \cup X_k)$



• symbol-to-symbol (ssH): quasi-alphabetic + $\varphi_k(f) \in \Delta(X_k)$

• **alphabetic** (aH): symbol-to-symbol + normalized (relabelings)

- Inear: no copying (each x_i appears at most once)
- complete: no deletion (each x_i appears at least once)
- normalized: $\varphi_3(f(x_1, x_2, x_3)) = g \qquad \varphi_3(f(x_1, x_2, x_3)) = g \qquad x_1 \qquad g \qquad x_1$
- quasi-alphabetic (qaH): linear + complete + $\varphi_V(v) \in Y + \varphi_k(f) \in \Delta(Y \cup X_k)$

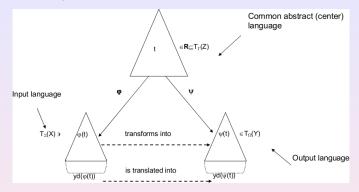


• symbol-to-symbol (ssH): quasi-alphabetic + $\varphi_k(f) \in \Delta(X_k)$

• alphabetic (aH): symbol-to-symbol + normalized (relabelings)

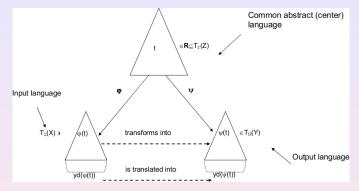
$$\varphi(f(t_1, t_2, t_3)) = \underbrace{\begin{array}{c}g\\ t_1\varphi\\ t_2\varphi\\ t_3\varphi\end{array}}$$

Maletti, Tîrnăucă: SDTS&Tree Bimorphism

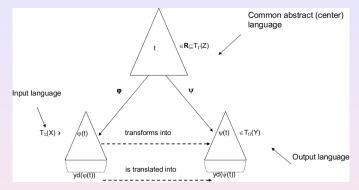


• $B = (\varphi, L, \psi)$ a tree bimorphism

- tree transformation defined by B: $\tau_B = \{(\varphi(t), \psi(t)) \mid t \in L\}$
- translation defined by B: $yd(\tau_B) = \{(yd_{V \setminus \{e\}}(s), yd_{Y \setminus \{e\}}(t)) \mid (s, t) \in \tau_B\}$
- e special variable, never output, acts as the empty string
- (φ, L, ψ) is quasi-alphabetic (symbol-to-symbol, alphabetic) if both φ and ψ have this property and L is a recognizable tree language



- $B = (\varphi, L, \psi)$ a tree bimorphism
- tree transformation defined by *B*: $\tau_B = \{(\varphi(t), \psi(t)) \mid t \in L\}$
- translation defined by B: $yd(\tau_B) = \{(yd_{V \setminus \{e\}}(s), yd_{Y \setminus \{e\}}(t)) \mid (s, t) \in \tau_B\}$
- e special variable, never output, acts as the empty string
- (φ, L, ψ) is quasi-alphabetic (symbol-to-symbol, alphabetic) if both φ and ψ have this property and L is a recognizable tree language



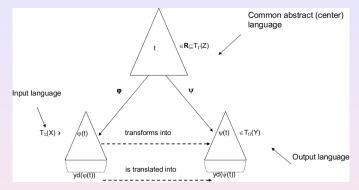
- $B = (\varphi, L, \psi)$ a tree bimorphism
- tree transformation defined by *B*: $\tau_B = \{(\varphi(t), \psi(t)) \mid t \in L\}$
- translation defined by B: $yd(\tau_B) = \{(yd_{V \setminus \{e\}}(s), yd_{Y \setminus \{e\}}(t)) \mid (s, t) \in \tau_B\}$

e special variable, never output, acts as the empty string

 (φ, L, ψ) is quasi-alphabetic (symbol-to-symbol, alphabetic) if both φ and ψ have this property and L is a recognizable tree language

Maletti, Tîrnăucă: SDTS&Tree Bimorphism

CAI '09, Thessaloniki



- $B = (\varphi, L, \psi)$ a tree bimorphism
- tree transformation defined by *B*: $\tau_B = \{(\varphi(t), \psi(t)) \mid t \in L\}$
- translation defined by B: $yd(\tau_B) = \{(yd_{V \setminus \{e\}}(s), yd_{Y \setminus \{e\}}(t)) \mid (s, t) \in \tau_B\}$
- e special variable, never output, acts as the empty string
- (φ, L, ψ) is quasi-alphabetic (symbol-to-symbol, alphabetic) if both φ and ψ have this property and L is a recognizable tree language



- $B = (\varphi, L, \psi)$ a tree bimorphism
- tree transformation defined by *B*: $\tau_B = \{(\varphi(t), \psi(t)) \mid t \in L\}$
- translation defined by B: $yd(\tau_B) = \{(yd_{V \setminus \{e\}}(s), yd_{Y \setminus \{e\}}(t)) \mid (s, t) \in \tau_B\}$
- e special variable, never output, acts as the empty string
- (φ, L, ψ) is quasi-alphabetic (symbol-to-symbol, alphabetic) if both φ and ψ have this property and L is a recognizable tree language

1 Introduction

Preliminaries

- Tree Homomorphisms
- Tree Bimorphisms

3 Syntax-Directed Translation Schemata

4 New Connection between SDTSs and Tree Bimorphisms

5 Closure under Composition

Definitions

What Is an SDTS?

Two CFGs over a common set of nonterminals (productions have **associated nonterminals**). Derivations are obtained by applying 2 suitable rules to associated nonterminals [Aho & Ullman 1972].

Definition (Syntax-Directed Translation Schema)[Aho & Ullman 1972] An **SDTS** is a device $\mathbf{T} = (N, V, Y, P, S)$, where:

- N is a finite set of nonterminal symbols,
- V is a finite input alphabet,
- Y is a finite output alphab
- $@.S \in M$ is the start symbol, and
- P is a finite set of productions of the form:

 $p = A \rightarrow u; w$

What Is an SDTS?

Two CFGs over a common set of nonterminals (productions have **associated nonterminals**). Derivations are obtained by applying 2 suitable rules to associated nonterminals [Aho & Ullman 1972].

Definition (Syntax-Directed Translation Schema)[Aho & Ullman 1972]

An **SDTS** is a device T = (N, V, Y, P, S), where:

- N is a finite set of nonterminal symbols,
- V is a finite input alphabet.
- Y is a finite output alphabet,
- $S \in N$ is the start symbol, and
- P is a finite set of **productions** of the form:

 ${oldsymbol
ho}={oldsymbol A}
ightarrow u;$ w

where $A \in N$, $u \in (N \cup V)^*$, $w \in (N \cup Y)^*$ and the nonterminals in *w* are a permutation of those in *u*.

au is **simple** if in each production the nonterminals occur in same order in u and w

What Is an SDTS?

Two CFGs over a common set of nonterminals (productions have **associated nonterminals**). Derivations are obtained by applying 2 suitable rules to associated nonterminals [Aho & Ullman 1972].

Definition (Syntax-Directed Translation Schema)[Aho & Ullman 1972]

An **SDTS** is a device T = (N, V, Y, P, S), where:

- N is a finite set of nonterminal symbols,
- V is a finite input alphabet,
- Y is a finite output alphabet,
- $S \in N$ is the start symbol, and
- P is a finite set of **productions** of the form:

p = A
ightarrow u; w

where $A \in N$, $u \in (N \cup V)^*$, $w \in (N \cup Y)^*$ and the nonterminals in *w* are a **permutation** of those in *u*.

T is **simple** if in each production the nonterminals occur in same order in *u* and *w*

What Is an SDTS?

Two CFGs over a common set of nonterminals (productions have **associated nonterminals**). Derivations are obtained by applying 2 suitable rules to associated nonterminals [Aho & Ullman 1972].

Definition (Syntax-Directed Translation Schema)[Aho & Ullman 1972]

An **SDTS** is a device T = (N, V, Y, P, S), where:

- N is a finite set of nonterminal symbols,
- V is a finite input alphabet,
- Y is a finite output alphabet,
- $S \in N$ is the start symbol, and

P is a finite set of productions of the form:

p = A
ightarrow u; w

where $A \in N$, $u \in (N \cup V)^*$, $w \in (N \cup Y)^*$ and the nonterminals in *w* are a permutation of those in *u*.

T is **simple** if in each production the nonterminals occur in same order in *u* and *w*.

What Is an SDTS?

Two CFGs over a common set of nonterminals (productions have **associated nonterminals**). Derivations are obtained by applying 2 suitable rules to associated nonterminals [Aho & Ullman 1972].

Definition (Syntax-Directed Translation Schema)[Aho & Ullman 1972]

An **SDTS** is a device T = (N, V, Y, P, S), where:

- N is a finite set of nonterminal symbols,
- V is a finite input alphabet,
- Y is a finite output alphabet,
- $S \in N$ is the start symbol, and
- P is a finite set of productions of the form:

 $p = A \rightarrow u; w$

where $A \in N$, $u \in (N \cup V)^*$, $w \in (N \cup Y)^*$ and the nonterminals in *w* are a permutation of those in *u*.

T is **simple** if in each production the nonterminals occur in same order in u and w.

What Is an SDTS?

Two CFGs over a common set of nonterminals (productions have **associated nonterminals**). Derivations are obtained by applying 2 suitable rules to associated nonterminals [Aho & Ullman 1972].

Definition (Syntax-Directed Translation Schema)[Aho & Ullman 1972]

An **SDTS** is a device T = (N, V, Y, P, S), where:

- N is a finite set of nonterminal symbols,
- V is a finite input alphabet,
- Y is a finite output alphabet,
- $S \in N$ is the start symbol, and
- *P* is a finite set of **productions** of the form:

 $p = A \rightarrow u; w$

where $A \in N$, $u \in (N \cup V)^*$, $w \in (N \cup Y)^*$ and the nonterminals in *w* are a permutation of those in *u*.

T is **simple** if in each production the nonterminals occur in same order in u and w.

What Is an SDTS?

Two CFGs over a common set of nonterminals (productions have **associated nonterminals**). Derivations are obtained by applying 2 suitable rules to associated nonterminals [Aho & Ullman 1972].

Definition (Syntax-Directed Translation Schema)[Aho & Ullman 1972]

An **SDTS** is a device T = (N, V, Y, P, S), where:

- N is a finite set of nonterminal symbols,
- V is a finite input alphabet,
- Y is a finite output alphabet,
- $S \in N$ is the start symbol, and
- *P* is a finite set of **productions** of the form:

 $p = A \rightarrow u; w$

where $A \in N$, $u \in (N \cup V)^*$, $w \in (N \cup Y)^*$ and the nonterminals in *w* are a permutation of those in *u*.

T is **simple** if in each production the nonterminals occur in same order in u and w.

An Example

Let $T = (\{S, A, B\}, \{0, 1\}, \{a, b, c\}, P, S)$, where P has the rules: $p_1 = S \rightarrow 0 A 11 B 0 B$; B A cba B aa $p_2 = A \rightarrow A A$; A a A $p_3 = A \rightarrow \epsilon$; ϵ $p_4 = B \rightarrow 01$; ϵ A derivation in T is:

 $(S, S) \stackrel{p_1}{\Longrightarrow}_T (0A11B0B, BAcbaBaa)$ $\stackrel{p_2}{\Longrightarrow}_T (0AA11B0B, BAaAcbaBaa)$ $\stackrel{p_3}{\Longrightarrow}_T^* (011B0B, BacbaBaa)$ $\stackrel{p_4}{\Longrightarrow}_T^* (01101001, acbaaa) .$

Definition (Syntax-Directed Translation)

The translation defined by a (simple) SDTS T is the relation

 $\tau_T = \{(u, w) \in V^* \times Y^* \mid (S, S) \Rightarrow^*_T (u, w)\},\$

and it will be called (simple) syntax-directed translation.

Maletti, Tîrnăucă: SDTS&Tree Bimorphism

An Example

Let $T = (\{S, A, B\}, \{0, 1\}, \{a, b, c\}, P, S)$, where P has the rules: $p_1 = S \rightarrow 0 \text{ A } 11 \text{ B } 0 \text{ B}$; B A cba B aa $p_2 = A \rightarrow A \text{ A}$; A a A $p_3 = A \rightarrow \epsilon$; ϵ $p_4 = B \rightarrow 01$; ϵ A derivation in T is: $(S, S) = p_1 = (0.411 \text{ B} 0 \text{ B}, B \text{ A} \text{ cba} B \text{ aa})$

 $(S,S) \stackrel{p_1}{\Longrightarrow}_T (0A11B0B, BAcbaBaa)$ $\stackrel{p_2}{\Longrightarrow}_T (0AA11B0B, BAaAcbaBaa)$ $\stackrel{p_3}{\Longrightarrow}_T^* (011B0B, BacbaBaa)$ $\stackrel{p_4}{\Longrightarrow}_T^* (01101001, acbaaa) .$

Definition (Syntax-Directed Translation)

The translation defined by a (simple) SDTS T is the relation

$$\tau_T = \{ (u, w) \in \mathbf{V}^* \times \mathbf{Y}^* \mid (\mathbf{S}, \mathbf{S}) \Rightarrow^*_T (u, w) \},\$$

and it will be called (simple) syntax-directed translation.

Maletti, Tîrnăucă: SDTS&Tree Bimorphism

Normal Form

Normal Form [Aho & Ullman 1969b]

A (simple) SDTS (N, V, Y, P, S) is in **normal form** if for every production $A \rightarrow u$; w in P

- *u*, *w* ∈ N* or
- $u \in V \cup \{\varepsilon\}$ and $w \in Y \cup \{\varepsilon\}$.

Proposition [Aho & Ullman 1969b, Lemma 3.1]

For every SDTS *T* there exists an SDTS *T'* in normal form such that $\tau_T = \tau_{T'}$. If *T* is simple, then *T'* can be chosen to be simple as well.

Theorem [Aho & Ullman 1969a, Theorem 2]

The class of all simple syntax-directed translations is **properly contained** in the class of all syntax-directed translations.

Normal Form

Normal Form [Aho & Ullman 1969b]

A (simple) SDTS (N, V, Y, P, S) is in **normal form** if for every production $A \rightarrow u$; w in P

- *u*, *w* ∈ N* or
- $u \in V \cup \{\varepsilon\}$ and $w \in Y \cup \{\varepsilon\}$.

Proposition [Aho & Ullman 1969b, Lemma 3.1]

For every SDTS *T* there exists an SDTS *T'* in normal form such that $\tau_T = \tau_{T'}$. If *T* is simple, then *T'* can be chosen to be simple as well.

Theorem [Aho & Ullman 1969a, Theorem 2]

The class of all simple syntax-directed translations is **properly contained** in the class of all syntax-directed translations.

Normal Form

Normal Form [Aho & Ullman 1969b]

A (simple) SDTS (N, V, Y, P, S) is in **normal form** if for every production $A \rightarrow u$; w in P

- *u*, *w* ∈ N* or
- $u \in V \cup \{\varepsilon\}$ and $w \in Y \cup \{\varepsilon\}$.

Proposition [Aho & Ullman 1969b, Lemma 3.1]

For every SDTS *T* there exists an SDTS *T'* in normal form such that $\tau_T = \tau_{T'}$. If *T* is simple, then *T'* can be chosen to be simple as well.

Theorem [Aho & Ullman 1969a, Theorem 2]

The class of all simple syntax-directed translations is properly contained in the class of all syntax-directed translations.

Maletti, Tîrnăucă: SDTS&Tree Bimorphism

1 Introduction

- PreliminariesTree Homomorphisms
 - Tree Bimorphisms
- 3 Syntax-Directed Translation Schemata
- 4 New Connection between SDTSs and Tree Bimorphisms
- 5 Closure under Composition

Syntax-Directed Translations and Tree Bimorphisms

Previous Result [Steinby & Tîrnăucă 2007, Theorem 5.7]

The class of syntax-directed translations is effectively equal to the class of translations defined by quasi-alphabetic tree bimorphisms.

New Result

The class of syntax-directed translations (respectively simple) coincides with the class of translations defined by symbol-to-symbol (respectively, alphabetic) tree bimorphisms.

Immediate Consequence

The class of all translations defined by alphabetic tree bimorphisms is properly contained in the class of all translations defined by symbol-to-symbol tree bimorphisms.

Syntax-Directed Translations and Tree Bimorphisms

Previous Result [Steinby & Tîrnăucă 2007, Theorem 5.7]

The class of syntax-directed translations is effectively equal to the class of translations defined by quasi-alphabetic tree bimorphisms.

New Result

The class of syntax-directed translations (respectively simple) coincides with the class of translations defined by symbol-to-symbol (respectively, alphabetic) tree bimorphisms.

Immediate Consequence

The class of all translations defined by alphabetic tree bimorphisms is properly contained in the class of all translations defined by symbol-to-symbol tree bimorphisms.

Syntax-Directed Translations and Tree Bimorphisms

Previous Result [Steinby & Tîrnăucă 2007, Theorem 5.7]

The class of syntax-directed translations is effectively equal to the class of translations defined by quasi-alphabetic tree bimorphisms.

New Result

The class of syntax-directed translations (respectively simple) coincides with the class of translations defined by symbol-to-symbol (respectively, alphabetic) tree bimorphisms.

Immediate Consequence

The class of all translations defined by alphabetic tree bimorphisms is properly contained in the class of all translations defined by symbol-to-symbol tree bimorphisms.

From SDTSs to Tree Bimorphisms

- Given a (simple) SDTS, assume it is in normal form
- 2 The difference from [Steinby & Tîrnăucă 2007] is in the homomorphisms: change the behaviour of the productions that only have terminals on the right-hand sides! Example
- With previous constructions, do a similar proof as the one in [Steinby & Tîrnăucă 2007] (it works)

From Tree Bimorphisms to SDTSs

A minor change of the proof of [Steinby & Tîrnăucă 2007] yields the result since

every symbol-to-symbol-tree bimorphism is quasi-alphabetic

the definition of translation of a bimorphism is slightly modified special symbol.

From SDTSs to Tree Bimorphisms

Given a (simple) SDTS, assume it is in normal form

The difference from [Steinby & Tîrnăucă 2007] is in the homomorphisms: change the behaviour of the productions that only have terminals on the right-hand sides! Example

With previous constructions, do a similar proof as the one in [Steinby & Tîrnăucă 2007] (it works)

From Tree Bimorphisms to SDTSs

A minor change of the proof of [Steinby & Tîrnăucă 2007] yields the result since

every symbol-to-symbol tree bimorphism is quasi-alphabetic

the definition of translation of a bimorphism is slightly modified: sp

From SDTSs to Tree Bimorphisms

Given a (simple) SDTS, assume it is in normal form

The difference from [Steinby & Tîrnăucă 2007] is in the homomorphisms: change the behaviour of the productions that only have terminals on the right-hand sides! Example

With previous constructions, do a similar proof as the one in [Steinby & Tîrnăucă 2007] (it works)

From Tree Bimorphisms to SDTSs

A minor change of the proof of [Steinby & Tîrnăucă 2007] yields the result since

every symbol-to-symbol tree bimorphism is quasi-alphabetic

From SDTSs to Tree Bimorphisms

Given a (simple) SDTS, assume it is in normal form

The difference from [Steinby & Tîrnăucă 2007] is in the homomorphisms: change the behaviour of the productions that only have terminals on the right-hand sides! Example

With previous constructions, do a similar proof as the one in [Steinby & Tîrnăucă 2007] (it works)

From Tree Bimorphisms to SDTSs

A minor change of the proof of [Steinby & Tîrnăucă 2007] yields the result since

every symbol-to-symbol tree bimorphism is quasi-alphabetic

the definition of translation of a bimorphism is slightly modified: special symbol e

the SDTS of [Steinby & Tîrnăucă 2007] is simple if the bimorphism is alphabetic

From SDTSs to Tree Bimorphisms

Given a (simple) SDTS, assume it is in normal form

The difference from [Steinby & Tîrnăucă 2007] is in the homomorphisms: change the behaviour of the productions that only have terminals on the right-hand sides! Example

With previous constructions, do a similar proof as the one in [Steinby & Tîrnăucă 2007] (it works)

From Tree Bimorphisms to SDTSs

A minor change of the proof of [Steinby & Tîrnăucă 2007] yields the result since

every symbol-to-symbol tree bimorphism is quasi-alphabetic

the definition of translation of a bimorphism is slightly modified: special symbol e

the SDTS of [Steinby & Tîrnăucă 2007] is simple if the bimorphism is alphabetic

From SDTSs to Tree Bimorphisms

Given a (simple) SDTS, assume it is in normal form

The difference from [Steinby & Tîrnăucă 2007] is in the homomorphisms: change the behaviour of the productions that only have terminals on the right-hand sides! Example

With previous constructions, do a similar proof as the one in [Steinby & Tîrnăucă 2007] (it works)

From Tree Bimorphisms to SDTSs

A minor change of the proof of [Steinby & Tîrnăucă 2007] yields the result since

- every symbol-to-symbol tree bimorphism is quasi-alphabetic
- the definition of translation of a bimorphism is slightly modified: special symbol e

the SDTS of [Steinby & Tîrnăucă 2007] is simple if the bimorphism is alphabetic

From SDTSs to Tree Bimorphisms

Given a (simple) SDTS, assume it is in normal form

The difference from [Steinby & Tîrnăucă 2007] is in the homomorphisms: change the behaviour of the productions that only have terminals on the right-hand sides! • Example

With previous constructions, do a similar proof as the one in [Steinby & Tîrnăucă 2007] (it works)

From Tree Bimorphisms to SDTSs

A minor change of the proof of [Steinby & Tîrnăucă 2007] yields the result since

- every symbol-to-symbol tree bimorphism is quasi-alphabetic
- the definition of translation of a bimorphism is slightly modified: special symbol e
- the SDTS of [Steinby & Tîrnăucă 2007] is simple if the bimorphism is alphabetic

1 Introduction

- Preliminaries
 Tree Homomorphisms
 Tree Bimorphisms
- 3 Syntax-Directed Translation Schemata
- 4 New Connection between SDTSs and Tree Bimorphisms
- 5 Closure under Composition

Two More Notations

Let Σ be a ranked alphabet, V a set of variables

- variable-free tree languages = subsets of T_Σ
- almost variable-free tree languages = subsets of $T_{\Sigma} \cup V$

Previous Result [Steinby & Tîrnăucă 2007]

The class of tree transformations defined by quasi-alphabetic tree bimorphisms with a variable-free center tree language is closed under composition.

New Result

Two More Notations

Let Σ be a ranked alphabet, V a set of variables

- variable-free tree languages = subsets of T_Σ
- almost variable-free tree languages = subsets of T_Σ ∪ V

Previous Result [Steinby & Tîrnăucă 2007]

The class of tree transformations defined by quasi-alphabetic tree bimorphisms with a variable-free center tree language is closed under composition.

New Result

Two More Notations

Let Σ be a ranked alphabet, V a set of variables

- variable-free tree languages = subsets of T_Σ
- almost variable-free tree languages = subsets of $T_{\Sigma} \cup V$

Previous Result [Steinby & Tîrnăucă 2007]

The class of tree transformations defined by quasi-alphabetic tree bimorphisms with a variable-free center tree language is closed under composition.

New Result

Two More Notations

Let Σ be a ranked alphabet, V a set of variables

- variable-free tree languages = subsets of T_Σ
- almost variable-free tree languages = subsets of $T_{\Sigma} \cup V$

Previous Result [Steinby & Tîrnăucă 2007]

The class of tree transformations defined by quasi-alphabetic tree bimorphisms with a variable-free center tree language is closed under composition.

New Result

- One homomorphism of a quasi-alphabetic tree bimorphism can always be normalized (for details, see Proposition 8 of the paper)
- Get rid of variables as much as possible: the class of tree transformations defined by quasi-alphabetic tree bimorphisms is equal with the class of tree transformations defined by quasi-alphabetic tree bimorphisms with an almost variable-free center tree language (see Lemma 9)
- 3 All almost variable-free trees with the same image under two normalized quasi-alphabetic tree homomorphisms can be paired up in a product data structure $T_{\Sigma \times \Delta}(V \times Y)$ (see Lemma 10)

Condition for closure under composition (see Lemmata 11 and 12): the class of tree transformations defined by quasi-alphabetic tree bimorphisms is closed under composition if

$\{t\in T_{\Omega}\cup V\mid \varphi(t)=\psi(t)\}$

- One homomorphism of a quasi-alphabetic tree bimorphism can always be normalized (for details, see Proposition 8 of the paper)
- Get rid of variables as much as possible: the class of tree transformations defined by quasi-alphabetic tree bimorphisms is equal with the class of tree transformations defined by quasi-alphabetic tree bimorphisms with an almost variable-free center tree language (see Lemma 9)

3 All almost variable-free trees with the same image under two normalized quasi-alphabetic tree homomorphisms can be paired up in a product data structure $T_{\Sigma \times \Delta}(V \times Y)$ (see Lemma 10)

Condition for closure under composition (see Lemmata 11 and 12): the class of tree transformations defined by quasi-alphabetic tree bimorphisms is closed under composition if

$\{t\in T_{\Omega}\cup V\mid \varphi(t)=\psi(t)\}$

- One homomorphism of a quasi-alphabetic tree bimorphism can always be normalized (for details, see Proposition 8 of the paper)
- Get rid of variables as much as possible: the class of tree transformations defined by quasi-alphabetic tree bimorphisms is equal with the class of tree transformations defined by quasi-alphabetic tree bimorphisms with an almost variable-free center tree language (see Lemma 9)
- 3 All almost variable-free trees with the same image under two normalized quasi-alphabetic tree homomorphisms can be paired up in a product data structure $T_{\Sigma \times \Delta}(V \times Y)$ (see Lemma 10)

Condition for closure under composition (see Lemmata 11 and 12): the class of tree transformations defined by quasi-alphabetic tree bimorphisms is closed under composition if

$\{t\in T_{\Omega}\cup V\mid \varphi(t)=\psi(t)\}$

- One homomorphism of a quasi-alphabetic tree bimorphism can always be normalized (for details, see Proposition 8 of the paper)
- Get rid of variables as much as possible: the class of tree transformations defined by quasi-alphabetic tree bimorphisms is equal with the class of tree transformations defined by quasi-alphabetic tree bimorphisms with an almost variable-free center tree language (see Lemma 9)
- 3 All almost variable-free trees with the same image under two normalized quasi-alphabetic tree homomorphisms can be paired up in a product data structure $T_{\Sigma \times \Delta}(V \times Y)$ (see Lemma 10)

Condition for closure under composition (see Lemmata 11 and 12): the class of tree transformations defined by quasi-alphabetic tree bimorphisms is closed under composition if

$\{t\in T_{\Omega}\cup V\mid \varphi(t)=\psi(t)\}$

References I

Alfred V. Aho and Jeffrey D. Ullman.

Properties of syntax directed translations. J. Comput. Syst. Sci., 3(3):319–334, 1969.

Alfred V. Aho and Jeffrey D. Ullman.

Syntax directed translations and the pushdown assembler. *J. Comput. Syst. Sci.*, 3(1):37–56, 1969.

Alfred V. Aho and Jeffrey D. Ullman.

Parsing, volume 1 of The Theory of Parsing, Translation, and Compiling. Prentice Hall, 1972.

André Arnold and Max Dauchet.

Morphismes et bimorphismes d'arbres. Theor. Comput. Sci., 20(1):33-93, 1982.

Symeon Bozapalidis.

Alphabetic tree relations. Theor. Comput. Sci., 99(2):177–211, 1992.

Joost Engelfriet.

Bottom-up and top-down tree transformations: A comparison. *Math. Syst. Theory*, 9(3):198–231, 1975.

Ferenc Gécseg and Magnus Steinby.

Tree Automata. Akadémiai Kiadó, Budapest, 1984.

References II

Kevin Knight.

Capturing practical natural language transformations. *Machine Translation*, 21(2):121–133, 2007.

Kevin Knight and Jonathan Graehl.

An overview of probabilistic tree transducers for natural language processing. In *Proc. CICLing*, volume 3406 of LNCS, pages 1–24. Springer, 2005.

Stuart M. Shieber.

Synchronous grammars as tree transducers.

In Proc. TAG+7, pages 88–95, 2004.

Magnus Steinby.

On certain algebraically defined tree transformations.

In Proc. Algebra, Combinatorics and Logic in Computer Science, volume 42 of Colloquia Mathematica Societatis János Bolyai, pages 745–764. North-Holland, 1986.

Magnus Steinby and Cătălin Ionuţ Tîrnăucă.

Defining syntax-directed translations by tree bimorphisms.

Theor. Comput. Sci., 2009. to appear. http://dx.doi.org/10.1016/j.tcs.2009.03.00

Masako Takahashi.

Primitive transformations of regular sets and recognizable sets. In *Proc. ICALP*, pages 475–480. North-Holland, 1972.

That's all folks!

Thank you!

From SDTS to Tree Bimorphism

Back

Let $T = (\{A, B\}, \{a, b\}, \{0, 1\}, P, A)$, where P has the rules: $p_1 = A \rightarrow ABA; BAA, \sigma = (2, 3, 1)$ $p_2 = B \rightarrow BB; BB, \sigma = (2, 1),$ $p_3 = A \rightarrow aba; \epsilon, and$ $p_4 = B \rightarrow b; 10.$

We turn P into a ranked alphabet: productions are symbols, number of its nonterminals gives the rank (e.g., $rk(p_2) = 2$). We construct two symbol-to-symbol tree homomorphisms

$$\varphi \colon T_{\{p_1, p_2\}}(\{p_3, p_4\}) \to T_{\{p_1, p_2\}}(\{a, b, e\}) \qquad \psi \colon T_{\{p_1, p_2\}}(\{p_3, p_4\}) \to T_{\{p_1, p_2\}}(\{0, 1, e\})$$

defined by

$$\begin{split} \varphi_{\{p_3,p_4\}}(p_3) &= aba & \psi_{\{p_3,p_4\}}(p_3) = e \\ \varphi_{\{p_3,p_4\}}(p_4) &= b & \psi_{\{p_3,p_4\}}(p_4) = 10 \\ \varphi_{3}(p_1) &= p_1(x_1, \dots, x_3) & \psi_{3}(p_1) = p_1(x_2, x_3, x_1) \\ \varphi_{2}(p_2) &= p_2(x_1, \dots, x_2) & \psi_{2}(p_2) = p_2(x_2, x_1) \end{split}$$

If T is simple (all permutations are identity), then clearly φ and ψ are alphabetic.